Tuesday, April 7, 2015

Sensitive LPG Leakage Alarm

Here is an ultra-sensitive LPG sensor that generates loud beeps when it senses any gas leakage. It detects vapours of liquefied petroleum gas anywhere between 200 and 10,000 ppm and drives a piezobuzzer to catch attention for immediate action. The buzzer beeps until the concentration of gas in the air decreases to a safe level. The circuit uses an MQ6 gas sensor, which is designed to sense LPG, propane and isobutane gases.

Circuit and working
Fig. 1 shows the circuit of the LPG sensor. The circuit is built around 5V voltage regulator 7805 (IC1), gas sensor MQ6 (GS1), counter IC 4060 (IC2) and a few discrete components.GS1 is a six-pin gas sensor that can detect very small traces of LPG in the air and has a swift response time. However, it has very less sensitivity to alcohol and smoke. The sensor’s output is in the form of resistance.

As indicated in Fig. 1, the pins of GSI are H, A and B, two each on either side. H pins are for the heater with no polarity. Input pins A or B and output pins A or B can be connected either way round.The coil heater inside the sensor can be easily heated with 5V DC. If pin A is connected to 5V DC through variable resistor VR1, use pin B as the output or vice versa. Both A and B pins can be shorted. In short, H pins are connected to positive and negative rails, A or B pin to 5V DC, and B or A for output.The resistance value of GSI is different for various kinds and concentration of gases. So when using this sensor, sensitivity arrangement is very important. For accurate detection, it is necessary to calibrate the sensor for 1000 ppm of LPG concentration in the air with load resistance of about 20 kilo-ohms. (In the datasheet, the load resistance range of MQ6 is mentioned as 10 kilo-ohms to 47 kilo-ohms.)


Preset VR1 is used to adjust the sensitivity of the sensor to a particular gas concentration. Output from the sensor is connected to the base of transistor T1, which acts as a switch to trigger the alarm generator built around IC2.IC2 is a binary counter IC that oscillates using capacitor C2 and resistor R5. Transistor T1 controls the reset pin (pin 12) of IC2. When the reset pin is high IC2 does not oscillate, and when this pin goes low IC2 starts oscillating.Working of the circuit is simple. When the sensor detects LPG in the air, its output becomes high and transistor T1 conducts to make reset pin of IC2 low. This triggers IC2 to oscillate, which is indicated by LED1. After a few seconds, the buzzer starts beeping to indicate gas leakage.The circuit works off 12V DC from a battery (BATT.1) or you can use an adaptor. IC1 provides regulated 5V DC supply for the sensor and IC2.


Construction and testing
An actual-size, single-side PCB for sensitive LPG sensor is shown in Fig. 2 and its component layout in Fig. 3. After assembling the circuit on a PCB, enclose it in a suitable case with an opening to allow the gas to enter. Place the unit near the LPG cylinder or gas stove within a distance of one metre. Vary preset VR1 to adjust the sensitivity of the sensor.To test the circuit, check 12V at test point TP1 with respect to TP0 to verify the correct power supply. Place the unit near the gas stove burner and turn on the burner for a few seconds without igniting. Then, turn ’the burner ‘off’ and adjust VR1 until you see LED1 glowing. TP3 should be low at this moment.





Circuits



A circuit is a complete and closed path through which electric current can flow. In other words, a closed circuit would allow the flow of electricity between power and ground. An open circuit would break the flow of electricity between power and ground.

Anything that is part of this closed system and that allows electricity to flow between power and ground is considered to be part of the circuit.

4K TV goes mainstream, but there’s more to come


UltraHD TVs were in every major booth, and they were the most talked-about productat the show. These TVs have a resolution of 3840 x 2160 pixels, or four times as detailed as the 1920 x 1080 pixels of high-definition TV. They’re sharper and don’t pixelate as much when you focus in on one section of the screen. On top of that, many of the TVs can accommodate faster-moving imagery, and they’re all inherently connected. And many of the screens are curved. No doubt the costs are coming down as well. All of that means that the variety of UltraHD TVs we will see this year will grow.
Samsung talked about its SUHD TVs that will have resolution just shy of 8K TV, or 16 times the number of pixels in a high-definition TV. And Sharp also described a screen with 167 percent the resolution of 4K TV. One difference this year: Companies such as Samsung and Sony were making a big effort to make more UltraHD content available, and that’s the ultimate driver of sales.

Electricity



There are two types of electrical  signals , those being alternating current (AC), and direct current (DC).

With alternating current, the direction electricity flows throughout the circuit is constantly reversing. You may even say that it is alternating direction. The rate of reversal is measured in Hertz, which is the number of reversals per second. So, when they say that the US power supply is 60 Hz, what they mean is that it is reversing 120 times per second (twice per cycle).

With Direct Current, electricity flows in one direction between power and ground. In this arrangement there is always a positive source of voltage and ground (0V) source of voltage. You can test this by reading a battery with a multimeter.

Speaking of voltage, electricity is typically defined as having a voltage and a current rating. Voltage is obviously rated in Volts and current is rated in Amps. For instance, a brand new 9V battery would have a voltage of 9V and a current of around 500mA (500 milliamps).

Single chip metal detector circuit

This is a simple single chip metal detector circuit based on IC CS209A from the Cherry Semiconductors. A 100uH coil is used to sense the presence of metal. The IC CS209A has a built in oscillator circuit and the coil L1 forms a part of its external LC circuit which determines the frequency of oscillation. The inductance of the coil change in the presence of metals and the resultant change in oscillation is demodulated to create an alarm. The LED gives a visual indication too. This circuit can sense metals up to a distance of few inches.














Note:
  • Assemble the circuit on a general purpose PCB.
  • The switch S1 can be a slide type ON/OFF switch.
  • The IC must be mounted on a holder.
  • The POT R1 can be used to adjust the sensitivity of the circuit.